
RESEARCH PAPER

Reliability of Inhibition Models to Correctly Identify Type
of Inhibition

Vidula Kolhatkar & James E. Polli

Received: 3 June 2010 /Accepted: 2 August 2010 /Published online: 14 August 2010
# Springer Science+Business Media, LLC 2010

ABSTRACT
Purpose Type of inhibition (e.g. competitive, noncompetitive)
is frequently evaluated to understand transporter structure/
function relationships, but reliability of nonlinear regression to
correctly identify inhibition type has not been assessed. The
purpose was to assess the ability of nonlinear regression to
correctly identify inhibition type.
Methods This aim was pursued through three objectives that
compared the competitive, noncompetitive, and uncompetitive
inhibition models to best fit simulated competitive and
noncompetitive data. The first objective involved conventional
inhibition data and entailed simulated data for the common
situation where substrate concentration was fixed at a single
level but inhibitor concentration varied. The second objective
involved Dixon-type data where both substrate and inhibitor
concentrations varied. A third objective involved nonconven-
tional inhibition data, where substrate concentration was varied
and inhibitor was fixed at a single concentration. Experimental
data were also examined.
Results Nonlinear regression performed poorly in identifying
the correct inhibition model for conventional inhibition data,
but performed moderately well for Dixon-type data. Interest-
ingly, nonlinear regression performed well for nonconventional
inhibition data, particularly at higher inhibitor concentrations.
Experimental data support simulation findings.
Conclusions Conventional inhibition data is a poor basis to
determine inhibition type, while Dixon-type data affords

modest success. Nonconventional inhibition data merits further
consideration.
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INTRODUCTION

Inhibition studies are routinely performed to gain insight
into the structure and function of transporters, particularly
when a transporter crystal structure is not available. For
example, two project areas in our laboratory involve the
apical sodium-dependent bile acid transporter (ASBT) and
the organic cation/carnitine transporter (OCTN2), where
transport inhibition studies by novel compounds and
diverse drugs have yielded pharmacophore models and
quantitative structure-activity relationships (QSAR) (1–4). A
simplifying assumption in proposing such pharmacophore
or QSAR models is that inhibition data assumes the same
type of inhibition, since two compounds that inhibit a
transporter by differing mode may not bind to the same
binding site. Hence, inhibition studies can benefit from
elucidating the type of inhibition by which various
compounds inhibit. Determining type of inhibition can also
help in understanding of interaction of inhibitors at the
binding site of transporter. For example, enalapril was
concluded to be a competitive inhibitor of glycylsarcosine
transport by the high-affinity peptide transporter (5),
whereas quinapril was concluded to be a noncompetitive
inhibitor (6). These conclusions suggested that enalapril and
glycylsarcosine bind at the same binding site, whereas
quinapril binds at a different binding site than glycylsarco-
sine. Thus, determining type of inhibition contributes
towards transporter structure/function understanding.
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Classic inhibition models include competitive, noncom-
petitive, and uncompetitive inhibition. Although these
models have long-standing use, it has not been assessed
when the competitive and noncompetitive models are
reliable in correctly elucidating the type of inhibition. One
common approach to discern between competitive and
noncompetitive inhibition is via nonlinear regression and
selection of the better fitting model. For instance, Lau and
Chang studied CYP2B6 inhibition by Ginkgo biloba extract
(7). Mode of inhibition was determined through inhibition
studies that used various inhibitor and substrate concentra-
tions, followed by nonlinear regression for competitive,
noncompetitive, mixed and uncompetitive inhibition. The
result was verified by visual inspection of a Lineweaver-Burk
plot and a Dixon plot. However, reliability of methods to
identify the correct model has not been evaluated in such
applications. The other approach to discern between types of
inhibition involves measuring changes in substrate parameters
Kt and Jmax with change in inhibitor concentration.

Three objectives were pursued that concerned the ability
to correctly identify the correct type of inhibition. The first
objective was to compare the abilities of the competitive,
noncompetitive, and uncompetitive inhibition models to
best fit simulated competitive and noncompetitive data,
where data reflected conventional inhibition data. Conven-
tional inhibition data entailed simulated data for the
common situation where substrate concentration was fixed
at a single level but inhibitor concentration varied. The
second objective was identical to this first objective, but
considered so-called Dixon-type data, where simulated data
was larger in scope, in that both substrate concentration
and inhibitor concentration were varied. These objectives
were pursued by simulating uptake values for each
competitive and noncompetitive inhibition model using an
Excel spreadsheet; Gaussian error was then incorporated to
the uptake values. These simulated data were subjected to
nonlinear model fitting, and the best fitting model was
identified. Since results showed that nonlinear regression
performed poorly in identifying the correct inhibition
model for conventional inhibition data, a third objective
was pursued, which was to perform similar studies as per
the first objective but for nonconventional inhibition data,
where substrate concentration was varied and inhibitor
concentration was fixed at a single level. Results from
experimental inhibition data were also examined to
challenge simulation observations.

Overall findings here suggest caution in suggesting a
specific inhibition model from various types of inhibition
data, including conventional data and even the more
comprehensive Dixon-type data. Additionally, results indicate
that nonconventional inhibition data merits further consider-
ation to identify type of inhibition, particularly since such an
approach is resource sparing compared to Dixon-type data.

MATERIALS AND METHODS

To assess the ability to correctly identify type of inhibition,
three objectives were pursued using simulated uptake data,
where each objective differed in scope of data. The first
objective employed simulated uptake where substrate
concentration was fixed at a single level but inhibitor
concentration varied (conventional inhibition data). The
second objective employed simulated uptake where both
substrate and inhibitor concentrations were varied (Dixon-
type data). The third objective employed simulated uptake
where substrate concentration was varied but inhibitor
concentration was fixed at a single level (nonconventional
inhibition data). These objectives involved data simulation,
followed by model fitting and comparison of model
performance. Simulations were employed since only simu-
lation can provide a basis to know with certainty the
underlying inhibition type. Results from experimental
inhibition data were also examined to challenge the
observations from simulation studies.

Analysis of Conventional Inhibition Data

Data Simulation

Simulated uptake values were obtained from competitive
and noncompetitive inhibition models. The competitive
and noncompetitive inhibition models are shown in Eqs. 1
and 2.

J ¼ JmaxS
Kt 1þ I=Kið Þ þ S

ð1Þ

J ¼ JmaxS
1þ I=Kið ÞðKt þ SÞ ð2Þ

where J is solute uptake, S is solute concentration, Jmax
and Kt are the Michaelis-Menten constants for transporter-
mediated uptake of solute, Ki is the inhibition coefficient,
and I is inhibitor concentration. Passive flux was considered
zero for simplicity. Simulations were performed with the
following parameters: Jmax=0.0005 nmol/s/cm2; Kt=
5 μM; S=2.5 μM. Three scenarios were studied. In the
first scenario, simulated uptake values were obtained from
the competitive model where Ki was 10 μM and inhibitor
concentration varied from 0 to 100 μM. In the second
scenario, simulated uptake values were obtained from each
competitive and noncompetitive model where Ki was
100 μM and inhibitor concentration varied from 0 to
500 μM, as well as from 0 to 1,000 μM. These values for
Ki, I, Kt, and S were assessed since these values reflect
typical ranges in the literature. Simulated uptake values
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were not obtained from the uncompetitive inhibition
model, since this model is of less general interest than the
other two models.

Uptake error was computed using Excel. Error in uptake
was incorporated using a percent coefficient of variation
(CV%) level of 30% and 10%, which reflects a higher and
lower end of common level of variation. Error was added
by multiplying the simulated uptake value from Eqs. 1 or 2
by a random number with mean 1.0 and standard
deviation 0.3 or 0.1. Profiles were simulated to allow for
each scenario to be evaluated 30 times (i.e. 30 occasions),
which is a large sample size (8). For each occasion,
simulations attempted to mimic experimental design using
n=3, such that each uptake value was simulated (with error)
three times for each unique condition for each occasion.

Model Fitting and Identification of Best Fitting Model

The competitive, noncompetitive, and uncompetitive inhi-
bition models were fitted to the simulated data using
WinNonlin 5.2 (Pharsight, Mountain View, CA). The
competitive and noncompetitive models are Eqs. 1 and 2,
respectively. The uncompetitive model is

J ¼ JmaxS
Kt þ S 1þ I=Kið Þ ð3Þ

Akaike Information Criterion (AIC) was used to select
the best fitting model from the competing models (9).

AIC ¼ n � ln
Xn

i¼1

wi Yobs;i � Ycal;i
� �2

 !
þ 2p ð4Þ

where n is the number of data points, i is the sequence
sample number, wi is the weight (wi=1), Yobs,i is the
observed value, Ycal,i is the predicted value, and p is the
number of model parameters.

Ki estimates from the correct model (even if not the best
fitting model) were evaluated in terms of accuracy by
comparing the Ki estimate to the true Ki (i.e. Ki value used
to simulate the data).

Analysis of Dixon-Type Data

Data Simulation

Simulated uptake values with error were obtained from
competitive and noncompetitive inhibition models as
above, using Eqs. 1 and 2. Simulations for two scenarios
were conducted to mimic a matrix of inhibition studies
involving three levels of substrate concentration, as well as
four levels of inhibitor concentrations (i.e. conducted to

mimic the large scope of data that is historically analyzed
by Dixon plots). In the first simulation scenario, which
covers a wide range of I/Ki, the following parameter
ranges were used: Jmax was 0.0005 nmol/s/cm2; S was 1,
5, and 10 μM; when Ki was 1 μM, I=0, 0.5, 2 and 5 μM;
and when Ki=100 μM, I=0, 50, 200, and 500 μM. The
ratio I/Ki ranged from 0 to 5.

The following parameter ranges were used in a second
simulation scenario with a more narrow, but more
experimentally-typical range, of I/Ki values: Jmax was
0.0002 nmol/s/cm2; Kt was 5 μM; S was 1, 2.5, and 5 μM;
Ki=58 μM; and I was 0, 10, 50, and 100 μM. The ratio I/Ki
ranged from 0 to 1.7, which reflects the typical range of I/Ki
values (10–15).

Error was incorporated using a CV% level of 20% or
30%, as described above. Uptake profiles were simulated to
allow for each scenario to be evaluated 30 times (i.e. 30
occasions), which is a large sample size (8). For each
occasion, simulations attempted to mimic experimental
design using n=3, such that each uptake value was
simulated (with error) three times for each unique condition
for each occasion.

Model Fitting and Identification of Best Fitting Model

As above for the first objective, primary analysis of this
Dixon-type data was non-linear regression, and not Dixon
plot analysis. For each the competitive, noncompetitive and
uncompetitive inhibition models, fits of Eqs. 1, 2, and 3 to
simulated data were conducted using WinNonlin. Simulta-
neous fitting of uptake versus inhibitor concentration was
conducted across the three levels of substrate concentration.
AIC was used in selecting the best fitting model. Ki
estimates from the best fitting nonlinear regression model
were also examined in terms of accuracy, by comparing to
the Ki value used to simulate the data. As secondary
analysis to nonlinear regression, simulated uptake data were
plotted as Dixon plots; plots were visually assessed to
determine type of inhibition.

Analysis of Nonconventional Inhibition Data

As results below indicate, conventional inhibition data
performed poorly in identifying the correct inhibition
model. Additionally, Dixon-type data requires a large and
comprehensive matrix of inhibition studies, which repre-
sents a practical barrier to routinely elucidate type of
inhibition. Hence, nonconventional inhibition data—where
substrate concentration was varied but inhibitor concentra-
tion was fixed at a single level—were assessed for its ability
to identify the correct inhibition model, even though such
studies are generally not performed. Of note, data for this
third objective was practically the same as for the first
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objective (i.e. same simulation approach and same range of
parameter values); first and third objectives only differed in
data groupings that were subjected to model regression,
although were simulated separately.

Data Simulation

Simulated uptake values with error were obtained from
competitive and noncompetitive inhibition models as
above, using Eqs. 1 and 2. Simulations were conducted
over following parameter ranges: Jmax=0.0005 nmol/s/
cm2; Kt=5 μM (as well as 500 μM for competitive model);
S ranged from 0.2 times Kt to 100 times Kt; and I/Ki ranged
from 0.01 to 100.

Model Fitting and Identification of Best Fitting Model

The competitive, noncompetitive and uncompetitive inhi-
bition models were fit to the simulated data using
WinNonlin 5.2. AIC was used in selecting the best fitting
model from the competing models.

Experimental Data

Materials

Ursodeoxycholic acid was purchased from TCI America
(Portland, OR, USA), taurocholic acid was purchased from
Calbiochem (La Jolla, CA, USA) and (3H) taurocholic acid
was obtained from PerkinElmer (Waltham, MA, USA).

Inhibition Studies

Inhibition studies were performed in hASBT-MDCK cell
line as described previously (3). Briefly, the cells were
exposed to donor solution containing taurocholate (spiked
with 3H taurocholate), and the inhibitor at 37°C for
10 min. After 10 min, cells were lysed, and cell lysate was
counted for associated radioactivity using a liquid scintilla-
tion counter.

Conventional inhibition data were obtained via an inhibi-
tion study using one fixed level of substrate concentration
(i.e. 2.5 μM taurocholic acid). Ursodeoxycholic acid was used
as inhibitor; inhibitor concentration ranged from 0 to 250 μM.
Dixon-type data was obtained via an inhibition study using
three taurocholate substrate concentrations (1, 2.5 and 5 μM)
and four ursodeoxycholate concentrations (0, 25, 50 and
100 μM). Nonconventional inhibition data was obtained via
an inhibition study performed at several taurocholate substrate
concentrations ranging from 1 to 500 μM and one inhibitor
(ursodeoxycholate) concentration. Two sets of nonconvention-
al inhibition data were obtained: one at I/Ki=1 and the other
at I/Ki=5.

Similar to Eqs. 1–3, inhibition data were fitted to the
competitive, noncompetitive, and uncompetitive models,
but allowed for a passive permeability component, per
Eqs. 5–7:

J ¼ JmaxS
Kt 1þ I=Kið Þ þ S

þ PpS ð5Þ

J ¼ JmaxS
1þ I=Kið ÞðKt þ SÞ þ PpS ð6Þ

J ¼ JmaxS
Kt þ S 1þ I=Kið Þ þ PpS ð7Þ

where Pp is the passive permeability.

RESULTS AND DISCUSSION

Analysis of Conventional Inhibition Data

Simulated Competitive Model Data

The first objective was to compare the abilities of
competitive, noncompetitive, and uncompetitive inhibition
models to best fit simulated competitive and noncompeti-
tive data from conventional inhibition studies. Tables I and
II summarize results obtained from simulated competitive
data and simulated noncompetitive data, respectively.

In Table I, study variables were model used to fit data
(competitive, noncompetitive, and uncompetitive), Ki (10
and 100 μM), maximum I/Ki ratio (5 and 10), and error
level (%CV of 10% and 30%). When Ki=10 μM, maxi-
mum I/Ki=10, and error is 30%, the competitive model (i.e.
the correct model) was the best fitting model only 36.7% of
the time. The uncompetitive mode was the best fitting 46.7%
of the time.

Fig. 1 plots the simulated conventional inhibition data
for two occasions (one occasion in panel A and another
occasion in panel B). These data reflect conventional
inhibition data, where uptake from a fixed, single concen-
tration of substrate is reduced as inhibitor concentration is
increased. Fig. 1 shows the fits of all three models to
simulated competitive data when Ki=10 μM. In Fig. 1
panel A, the uncompetitive model was the best fitting
model, where r2 was 0.900 for competitive, noncompetitive
and uncompetitive fits. All three fit profiles were practically
the same. For this simulation occasion (of the total of 30
independent occasions), AIC values did not determine the
competitive model to be the best fitting model. Meanwhile,
in panel B, the competitive model was the best fitting model
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per AIC, where r2 was 0.818 for competitive, noncompetitive
and uncompetitive fits. In general, all the competitive,
noncompetitive, and uncompetitive fits were very similar
from conventional inhibition data, as reflected in the two
occasions in Fig. 1. It should be noted that r2 values are
reported here, since r2 values are frequently inspected as a
measure of absolute quality of fit, even though AIC was used
to identify the best fitting model.

In Table I, reducing error from 30% to 10% did not
improve the ability to identify the competitive model as the
correct model (compare 20.0% for%CV=10% to 36.7%
for %CV=30%). Furthermore, in Table I, when Ki was
100 μM and maximum I/Ki was 5 (i.e. inhibitor concen-
tration ranged from 0 to 500 μM), the competitive model
was the best fitting model only 26.7% of the time.
Increasing the maximum I/Ki to 10 resulted in the
competitive model to be correctly identified 43.3% of the
time, which is still poor. This increase in maximum
inhibitor concentration from 500 μM to 1,000 μM
enhanced the percent substrate inhibition from 76.9% to
86.9%, which may have contributed to the greater
reliability to identify the correct model. Unfortunately,
such high inhibitor concentration may not be feasible in all
cases because of limited inhibitor solubility. Also, changing
the weighting from 1 (i.e. no weighting) to weighting of
1/observed2 practically did not change the ability to
identify the right model. Using weighting of 1/observed2,
the competitive, noncompetitive and uncompetitive models
were the best fitting models 30.0%, 23.3%, and 46.7% of the
time, respectively, compared to 36.7%, 16.6%, and 46.7%

with weighting of 1 (Table I line 2). Similarly, using a
different optimization algorithm and different initial con-
ditions had no practical impact. Using the Nelder-Mead
simplex algorithm (rather than Gauss-Newton algorithm
with Levenberg and Hartley modification), the competitive,
noncompetitive and uncompetitive models were the best
fitting models 16.7%, 33.3%, and 50.0% of the time. Using
initial conditions that differed from the original initial
condition by being lower or higher than the estimated
values, distribution was 40.0%, 40.0%, and 20.0%.

Notably, the accuracy of the competitive Ki estimate was
dependent upon%CV, as expected, as well as upon Ki. The
percent of occasions that Ki was accurate (i.e. within 20% of
true competitive Ki) was 100%, 36.7%, 63.3%, and 66.7%
for the four scenarios listed (top to bottom) in Table I,
respectively. Hence, in Table I from conventional inhibi-
tion data, very infrequently was the correct model identified
and Ki accurately estimated.

Simulated Noncompetitive Model Data

Noncompetitive data were simulated for Ki=100 μM.
Results are summarized in Table II. When maximum ratio
of I/Ki was 5, the noncompetitive model was correctly
identified as the best fitting model only 26.7% of the time.
When maximum ratio of I/Ki was increased to 10 (i.e.
inhibitor concentration up to 1,000 μM), noncompetitive
model was correctly identified only 30% of the time. In
Table II, Ki estimates for the noncompetitive model were
accurate 50.0% and 56.7% of the time when inhibitor

Table I Results from Conventional Inhibition Data. Data were Simulated from Competitive Inhibition Model, where Ki, Maximum I/Ki, and Random
Error were Varied. Under Best Fitting Model, Values are the Percentage of Times that the Best Fitting Model was Competitive, Noncompetitive, or
Uncompetitive. Percentages are Derived from Simulations of 30 Occasions (n=3 Per Occasion). AIC was Used to Identify the Best Fitting Model

Ki (μM) Maximum I/Ki %CV error Best fitting model

Competitive Noncompetitive Uncompetitive

10 10 10% 20.0% 13.3% 66.7%

10 10 30% 36.7% 16.6% 46.7%

100 5 30% 26.7% 23.3% 50%

100 10 30% 43.3% 20% 36.7%

Table II Results from Conventional Inhibition Data. Data were Simulated from Noncompetitive Inhibition Model, where Ki, Maximum I/Ki, and Random
Error were Varied. Under Best Fitting Model, Values are the Percentage of Times that the Best Fitting Model was Competitive, Noncompetitive, or
Uncompetitive. Percentages are Derived from Simulations of 30 Occasions (n=3 Per Occasion). AIC was Used to Identify the Best Fitting Model

Ki (μM) Maximum I/Ki %CV error Best fitting model

Competitive Noncompetitive Uncompetitive

100 5 30% 40.0% 26.7% 33.3%

100 10 30% 30% 30% 40%
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concentrations were up to 500 μM and 1,000 μM,
respectively. These poor results from noncompetitive data
(Table II) are practically the same as the poor results from
competitive data (Table I), indicating conventional inhibi-
tion data is a poor basis to determine type of inhibition.

Analysis of Dixon-Type Data

The second objective was to compare the abilities of the
competitive and noncompetitive inhibition models to best

fit simulated data where substrate concentration and
inhibitor concentration were varied. Varying both sub-
strate concentration and inhibitor concentration is re-
quired for traditional Dixon plots, such that these data
here are referred to as Dixon-type data. Because
substrate concentration is also varied, Dixon-type data
are several-fold larger in scope than traditional inhibition
data (i.e. objective one above).

Two simulation scenarios were studied that differed in
the extent of inhibition. In one scenario, I/Ki ranged
from 0 to 5, which represents a wide range in inhibitor
concentration, compared to typical literature reports. In
the second scenario, I/Ki ranged from 0 to 1.7, which is a
more narrow range, but one that better reflects common
practice.

First Simulation Scenario

Simulations covered a range of I/Ki from 0 to 5, which
reflects a high level of inhibition (i.e. large inhibition
concentration, relative to Ki potency). In Table III, results
indicate that, when competitive inhibition data were
simulated with 30% error, the competitive model was the
best fitting model 76.7% of the time (Ki=1 μM). Otherwise,
the noncompetitive model was the best fitting model
(23.3% of the time). The uncompetitive model was never
the best fitting model.

Fig. 2 shows the simultaneous inhibition profile fits for
each of the three substrate concentrations (i.e. 1, 5, and
10 μM). Panels A and B show results from two of the 30
occasions. In panel A, the competitive model was the
best fitting model; meanwhile, the noncompetitive model
was the best fitting model in panel B. Although the
competitive model was usually (and correctly so) the best
fitting model (76.7% of the time), Fig. 2 highlights that
the quality of fits across all three inhibition models was
very similar.

In Table III, when noncompetitive inhibition data were
simulated and Ki=1 μM, similar fits resulted, in that the
correct model (i.e. noncompetitive model) was selected
66.7% of the time. In Table III, results were similarly
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Fig. 1 Fit of all three inhibition models to conventional inhibition data. Data
were simulated from competitive inhibition model, where Ki=10 μM and
error was 30%. In panel A, the uncompetitive model was the best fitting
model, although all three r2 were about 0.90. In panel B, the competitive
model was the best fitting model, although all three r2 were about 0.82.
Panels A and B each present one simulation occasion of the 30 total
independent occasions that were conducted. For each occasion, n=3
profiles were simulated. AIC was used to identify the best fitting model.

Table III Results from Dixon-Type Data. Data were Simulated from Either Competitive or Noncompetitive Inhibition Model, Where Maximum I/Ki=5
but Ki Varied. Under Best Fitting Model, Values are the Percentage of Times that the Best Fitting Model was Competitive, Noncompetitive, or
Uncompetitive. Percentages are Derived from Simulations of 30 Occasions (n=3 Per Occasion). AIC was Used to Identify the Best Fitting Model.
Simulated Data Used 30% Error

Ki (μM) Data origin Best fitting model

Competitive Noncompetitive Uncompetitive

1 Competitive 76.7% 23.3% 0%

1 Noncompetitive 30.0% 66.7% 3.33%

100 Noncompetitive 16.7% 76.7% 6.67%
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successful from simulated noncompetitive inhibition data
where Ki=100 μM (76.7% correct). Similarity in results
for Ki=100 μM and Ki=1 μM are due to inhibitor
concentration being proportionally changed (i.e. I/Ki
had the same 0 to 5 range). The extent of inhibition was
the same whether Ki=1 μM or Ki=100 μM, such that
these scenarios in Table III yield similar results. Ki
estimates were accurate about 50–60% of the time,

regardless whether the correct model was the best fitting
model.

Second Simulation Scenario: Nonlinear Regression

Simulated experiments covered a range of I/Ki from 0 to 1.7,
which reflects lower level of inhibition than the first simulation
scenario. This more narrow range reflects the common ranges
in the literature (10–15). Results for I/Ki from 0 to 1.7 in
Table IV broadly mimicked results for I/Ki from 0 to 5 in
Table III. Interestingly, when competitive inhibition data
were simulated and 30% error added, the competitive model
was the best fitting model 76.7% of the time, the
noncompetitive model was best fitting 23.3% of the time,
and the uncompetitive model was never the best fitting
model. These results for I/Ki from 0 to 1.7 (Table IV) are
identical to those results for I/Ki from 0 to 5 (Table III).
Comparing Table III and IV for simulated noncompetitive
inhibition data show the noncompetitive model was selected
about 60–80% of the time. Table IV also shows results when
competitive data simulated with 20% error. There was no
appreciable difference in results between 20% and 30% error
(i.e. 80% correct versus 76.7% correct).

Above results indicate that nonlinear regression was
modestly successful in identifying the type of inhibition
(range from 60.0% to 80.0% in Tables III and IV). Hence,
we suggest caution in concluding inhibition type, even
when employing comprehensive data where both substrate
and inhibitor concentration are varied. Perhaps not
surprising, level of success from this more compressive data
was greater than from conventional inhibition data, where
the success rate (20.0–43.3%) was poor.

Even in spite of this moderate success rate fromDixon-type
data, nonlinear regression frequently did not estimate Ki
accurately. For the simulated competitive and noncompeti-
tive data with Ki=1 μM with added 30% error (Table III),
an accurate estimate of Ki was obtained only 56.7% and
50.0% of the time, respectively. For the simulated noncom-
petitive data with Ki=100 μM, an accurate estimate of Ki
was obtained only 63.3% of the time.
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Fig. 2 Simultaneous fits of the competitive inhibition model to Dixon-
type data. Data were simulated from competitive inhibition model, where
I/Ki ranged from 0–5 and error was 30%. In panel A, the competitive
model was the best fitting model, although all three r2 were about 0.68. In
panel B, the noncompetitive model was the best fitting model, although all
three r2 were about 0.73. Panels A and B each present one simulation
occasion of the 30 total independent occasions that were conducted. For
each occasion, n=3 profiles were simulated for each of the three levels of
substrate 1 μM (closed circle), 2.5 μM (open circle), and 5 μM (closed
triangle). AIC was used to identify the best fitting model.

Table IV Results from Dixon-type Data. Data were Simulated from Either Competitive or Noncompetitive Inhibition Model, Where Maximum I/Ki=1.7
and Ki=58. Under Best Fitting Model, Values are the Percentage of Times that the Best Fitting Model was Competitive, Noncompetitive, or
Uncompetitive. Percentages are Derived from Simulations of 30 Occasions (n=3 Per Occasion). AIC was Used to Identify the Best Fitting Model

Ki (μM) %CV error Data origin Best fitting model

Competitive Noncompetitive Uncompetitive

58 20% Competitive 80.0% 20.0% 0%

58 30% Competitive 76.7% 23.3% 0%

58 30% Noncompetitive 20.0% 60.0% 20.0%
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Second Simulation Scenario: Dixon Plot Analysis

While nonlinear regression is the primary focus, secondary
analysis is present here, where Dixon-type data is subjected
to Dixon plot analysis. Linearized forms of inhibition
models such as Dixon plots and Lineweaver-Burk plots
are commonly used to elucidate type of inhibition and
inhibition constant Ki. The Dixon plot has been reported
to have some limitations, and many authors have suggested
use of nonlinear regression rather than the linearized form
to calculate Ki (16,17). Yet, the Dixon plot is still frequently
used to evaluate the mode of inhibition (18–20). Surpris-
ingly, the accuracy of the Dixon plot to correctly identify
the type of inhibition has never been assessed.

Fig. 3 shows Dixon plots from simulated noncompetitive
data. In a Dixon plot, noncompetitive inhibition provides
profiles that intersect on the x-axis. In panel A of Fig. 3,
inhibition appears to be competitive (i.e. incorrect conclu-

sion), since the profiles intersect above the x-axis. In panel
B, two profiles intersect above the x-axis, while two others
intersect on the x-axis, such that the correct inhibition type
(i.e. noncompetitive inhibition) was not easily concluded. In
both panels A and B, this classic approach to assess for
noncompetitive inhibition failed to conclude noncompeti-
tive inhibition. From this graphical/visual approach to
discriminate competitive versus noncompetitive versus
uncompetitive inhibition, the noncompetitive model per-
formed poorly. For simulated noncompetitive data with
30% error, the correct model was concluded only on two of
30 occasions. On 22 of the 30 occasions, it was not readily
possible to identify the type of inhibition (i.e. appear like
Fig. 3 panel B). For simulated competitive data with either
20% or 30% added error, the correct model was identified
only on four of the 30 occasions.

Second Simulation Scenario: Summary

Overall results indicate that nonlinear regression was
moderately successful in identifying the type of inhibition
(about 60–80% of the time). This level of reliability was
observed for both the competitive and noncompetitive
inhibition model, as well as for both 20% and 30% error.
However, nonlinear regression often did not estimate Ki
accurately (i.e. within 20% of true Ki). For the simulated
competitive data with added 30% error, an accurate
estimate of Ki was obtained only 30% of the time. When
added error was reduced from 30% to 20%, performance
improved, where Ki estimates were accurate 56.7% of the
time. Meanwhile, for the noncompetitive data with added
30% error, accurate Ki was estimated only 50% of the
time.

Analysis of Nonconventional Inhibition Data

From objective one, conventional inhibition data per-
formed poorly in identifying the correct model. This finding
from this most common type of inhibition data (i.e. uptake
from a single, fixed substrate concentration as a function of
a range of inhibitor concentrations) motivated an analysis to
assess whether similar inhibition data, but varying substrate
concentration and not inhibitor concentration, could
improve performance.

Simulated Competitive Model Data

Table V summarizes results obtained from simulated
competitive data where substrate concentration was varied
and inhibitor concentration was fixed at a single level.
Simulations involved 30% error and covered a range of
scenarios, where Kt was 5 μM or 500 μM, and the ratio of
I/Ki was 0.01, 1 or 100. All figures relating to the third
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Fig. 3 Dixon plots of Dixon-type data. Data were simulated from
noncompetitive inhibition model, where I/Ki ranged from 0–1.7. Each panel
A and B are data from separate occasions of the 30 total independent
occasions that were simulated. In spite of this sameness in data origin, panel
A is visually different from panel B. In panel A, inhibition appears to be
competitive, since the three lines intersect above the x-axis. In panel B,
inhibition appears to be indeterminate, since two lines intersect above the x-
axis, while another pair intersects on the x-axis. In each panel, substrate
concentration is 1 μM (closed circle), 2.5 μM (open circle), and 5 μM (closed
triangle). Simulated data used 30% error. For each occasion, n=3 profiles
were simulated for each of the three levels of substrate.
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objective are in terms of substrate uptake versus substrate
concentration; such inhibition plots are uncommon, since
inhibitor concentration is fixed at a single level and not
varied, while substrate concentration is varied. Fig. 4 differs
from Fig. 1, which reflects conventional inhibition data.

In Table V, when I/Ki was 0.01, the competitive model
was the best fitting model only 50% of the time for Kt=
5 μM or 500 μM. Fig. 4 shows all three model fits to
simulated competitive data on two separate occasions when
Kt=5 μM. In Fig. 4 Panel A, the competitive model was the
best fitting model, where r2=0.894, 0.892 and 0.892 for
competitive, noncompetitive and uncompetitive fits, respec-
tively. In panel B, the uncompetitive model was the best
fitting model, where r2=0.728, 0.728, and 0.740 for
competitive, noncompetitive and uncompetitive fits, respec-
tively. In general, the noncompetitive fit was very similar to
the competitive fit, such that noncompetitive was infre-
quently the best fitting model (i.e. less than 20% of time).
Meanwhile, uncompetitive fits were similar to, but suffi-
ciently different from, the other two models, such that it
was best fitting about one-third of the time.

In Table V, the competitive model performed better
when I/Ki was increased from 0.01 to 1 and 100, where
the competitive model was always the best fitting model.
Fig. 5 shows all three fits to data simulated from the

Table V Results from Nonconventional Inhibition Data. Data were Simulated from Competitive Inhibition Model, Where Kt and I/Ki were Varied. Under
Best Fitting Model, Values are the Percentage of Times that the Best Fitting Model was Competitive, Noncompetitive, or Uncompetitive Percentages are
Derived from Simulations of 30 Occasions (n=3 Per Occasion). AIC was Used to Identify the Best Fitting Model. Simulated Data Used 30% Error

Kt (μM) I/Ki Best fitting model

Competitive Noncompetitive Uncompetitive

5 0.01 50.0% 16.7% 33.3%

5 1 100% 0% 0%

5 100 100% 0% 0%

500 0.01 50.0% 10.0% 40.0%

500 1 100% 0% 0%

500 100 100% 0% 0%
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Fig. 4 Fit of all three inhibition models to nonconventional inhibition data.
Data were simulated from competitive inhibition model, where I/Ki=0.01
and error was 30%. In panel A, the competitive model (red) was the best
fitting model, although all three r2 were about 0.73. The noncompetitive
fit (green) overlaps with the uncompetitive fit (blue). In panel B, the
uncompetitive model was the best fitting model, although all three r2 were
about 0.89. The competitive fit overlaps with the noncompetitive fit.
Panels A and B each present one simulation occasion of the 30 total
independent occasions that were conducted. For each occasion, n=3
profiles were simulated. AIC was used to identify the best fitting model.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500

up
ta

ke
 (

pm
ol

/s
/c

m
2 )

obs

fitted competitive

fitted noncompetitive

fitted uncompetitive

Fig. 5 Fit of all three inhibition models to nonconventional inhibition data.
Data were simulated from competitive inhibition model, where I/Ki=1 and
error was 30%. The competitive model was always the best fitting model,
although all three r2 were about 0.84. The noncompetitive and uncompet-
itive fits overlap. The plot presents one simulation occasion of the 30 total
independent occasions that were conducted. For each occasion, n=3
profiles were simulated. AIC was used to identify the best fitting model.
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competitive inhibition model when ratio was 1. In Table V,
Kt did not have a notable impact. Results were similar
whether Kt=5 μM or 500 μM.

Simulated Noncompetitive Model Data

Noncompetitive inhibition data were simulated with Kt=
5 μM. Results are summarized in Table VI and demonstrate
the noncompetitive model is less frequently the best fitting
model, compared to the competitive model (Table V).
However, as above, the correct model was always the best
fitting model when I/Ki was large (i.e. I/Ki≥10). Interesting-
ly, when I/Ki≤1, the noncompetitive model was infrequently
the best model (3.33%). Unlike the simulated competitive
data, I/Ki needed to be 10 (rather than 1) for the
noncompetitive model to be the best fitting model 100% of
the time. While the competitive model was always the best
fitting model when I/Ki=1, the noncompetitive model was
infrequently the best fitting model when I/Ki=1.

Overall Performance of Nonconventional Inhibition Data

For the third objective, overall results show that the use of
nonconventional data had modest success in identifying the
correct model. The level of success depended upon the
ratio of I/Ki, where greater inhibition promoted higher
reliability. When the competitive model was the correct
model, success was 100% when I/Ki was 1 or larger. When
the noncompetitive model was the correct model, success
was 100% when I/Ki was 10 or larger. These results are a
marked contrast to findings using conventional data, where
success was 30–35%. Overall findings here suggest non-
conventional data merits further examination as an
approach to employ minimal data and determine inhibition
type. Interestingly, nonconventional data was only a
fraction in scope of the Dixon-type data, but performed
better than analysis that used Dixon-type data.

A possible explanation of the better performance of the
nonconventional data is the greater inhibition afforded by

the nonconventional data. For example, for nonconven-
tional data, the best fitting model being the correct model
depended upon I/Ki, where greater inhibition promoted
higher reliability. For higher I/Ki, nonlinear regression with
AIC frequently performed well, in terms of the correct
model being the best fitting model, even when the absolute
difference in AIC values and r2 values between competing
models were small. When data were simulated using a
competitive inhibition model, nonlinear regression with
AIC usually was able to identify the competitive inhibition
model with moderate success (about 75% of the time). This
level of success was about the same when data were
noncompetitive, although noncompetitive data were more
sensitive to the I/Ki ratio. For example, when I/Ki=1 and
30% error, the extent of inhibition reached 45%, allowing
the competitive inhibition model to be correctly identified
all the time.

While the ability to reliably characterize competitive
inhibition as competitive required only 45% inhibition, it
should be recognized that low inhibitor solubility can limit
achieving even this necessary level of inhibition (21).
Compared to competitive inhibition with 30% error
(Table V), less desirable results were observed for the
noncompetitive inhibition model with 30% error
(Table VI). When I/Ki was even as high as 1 (i.e. 50%
inhibition), the noncompetitive inhibition model was iden-
tified only 3.3% of the time; usually, the competitive
inhibition model was incorrectly identified as the model.
When I/Ki=10, the extent of inhibition reached 90%,
allowing the noncompetitive inhibition model to be
correctly identified all the time. For both the competitive
and noncompetitive models, a specific level of inhibition
was required to reliably identify the correct model. For the
competitive model, 45% inhibition was sufficient. For
noncompetitive model, 50% inhibition was insufficient,
but rather required 90% inhibition, which is a two-fold
greater requirement. This high level of inhibition may be
problematic if a compound suffers from modest inhibition
potency and/or low solubility.

Table VI Results from Nonconventional Inhibition Data. Data were Simulated from Noncompetitive Inhibition Model, Where I/Ki were Varied and Kt=
5 μM. Under Best Fitting Model, Values are the Percentage of Times that the Best Fitting Model was Competitive, Noncompetitive, or Uncompetitive
Percentages are Derived from Simulations of 30 Pccasions (n=3 Per Occasion). AIC was Used to Identify the Best Fitting Model. Simulated Data Used
30% Error

Kt (μM) Ratio (I/Ki) Best fitting model

Competitive Noncompetitive Uncompetitive

5 0.01 60.0% 3.33% 36.7%

5 1 53.3% 3.33% 43.3%

5 10 0% 100% 0%

5 100 0% 100% 0%

2442 Kolhatkar and Polli



Reflections from Experimental Data

Ursodeoxycholic acid is expected to bind to ASBT at the
same binding site as taurocholic acid, since they are both
native bile acids and share high chemical similarity.
Moreover, ASBT is a relatively small transporter, with a
molecular weight of 43 kDa (22). The taurine conjugate of
ursodeoxycholate has been identified as a competitive
inhibitor of taurocholate (23).

Conventional Inhibition Data

Inhibition studies were performed over a range of urso-
deoxycholate concentrations, while substrate (taurocholate)
concentration was maintained at 2.5 μM. The maximum
ratio of I/Ki was 7.1, which was in the range of the
simulations performed. Competitive Ki for ursodeoxycho-
late was found to be 35.2±2.67 μM, which is similar to the
previous report (24). Fig. 6 panel A shows model fits to the
conventional inhibition data. As expected from simulations,
the competitive, noncompetitive and uncompetitive fits in

Fig. 6 panel A were very similar to each other. The
noncompetitive model was the best fitting model, which
we believe is an incorrect model. For simulations that
were similar to this experimental condition (Table I
where I/Ki=10 and%CV=10%), the competitive and
noncompetitive models were best fitting 20.0% and 13.3%
of the time.

Nonconventional Inhibition Data

Nonconventional inhibition data was obtained under two
sets of conditions, where I/Ki was designed to vary,
employing an expected Ki value of 35.2 μM from the
conventional inhibition results above. In both conditions,
taurocholate concentration ranged from 0 to 500 μM, but
where I/Ki=1 in one set (i.e. I=35.2 μM), while I/Ki=5 in
the second set (i.e. I=176 μM).

When I/Ki=1, the noncompetitive model (incorrect
model) was the best fitting model. When I/Ki=5, the
competitive model (correct model) was the best fitting
model; Fig. 6 panel B plots the result. Experimental results
are partially consistent with simulation results (Table V).
Simulation results in Table V suggest very high accuracy
to identify the competitive model as the correct model
when I/Ki=1 or higher (e.g. high accuracy when the
percentage of inhibition reached 45.4% or greater). Here,
the presumably correct model (i.e. competitive model) was
concluded only when I/Ki=5, where the percentage of
inhibition reaches 80.6%. Overall, with the assumption
that ursodeoxycholate competitively inhibits taurocholate,
nonconventional inhibition data appears to have per-
formed better than conventional inhibition data. Howev-
er, these experimental results suggest that even simulation
results, which anticipate modest ability for nonlinear
regression to identify the correct model, may be too
optimistic.

Dixon-Type Data

Dixon-type data was generated by varying both inhibitor
and substrate concentrations. Ursodeoxycholate concentra-
tions were 0, 25, 50, and 100 μM (i.e. four levels).
Taurocholate concentrations were 1, 2.5, and 5 μM (i.e.
three levels). In pooling uptake data from all 12 experi-
mental conditions, simultaneous nonlinear regression was
applied to this Dixon-type data. Figure S1 panel A
(Supplemental Material) shows the competitive, noncompetitive
and uncompetitive fits. The competitive model was the best
fittingmodel. Figure S1 panel B (Supplemental Material) shows
the traditional Dixon plot for this data set. All three profiles
did not intersect at one point, as required for competitive
inhibition. Two points of intersection were above the x-axis.
Thus, the traditional Dixon plot appears to conclude
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Fig. 6 Results from experimental data. Panel A shows model fits to
conventional inhibition data, where substrate concentration is 2.5 μM.
The noncompetitive model was the best fitting model, although all three
r2 were about 0.99. Panel B shows fits to nonconventional inhibition data,
when I/Ki=5. The competitive model was the best fitting model, although
r2 was about 0.99 for competitive and noncompetitive fit and 0.98 for
uncompetitive fit. Each point is mean±SEM of three measurements.
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competitive inhibition. It was not possible to measure Ki from
the plot, since all the profiles did not intersect at one point.

Comparison Between Conventional
and Nonconventional Inhibition Data

Findings here are notable in that nonconventional
inhibition data appears more promising than conven-
tional inhibition data in trying to identify the correct
inhibition model from in vitro assessment. Hence, error-
free simulations were performed. For conventional
inhibition data, when there is no error added to uptake
values and I/Ki=100, 98.5% inhibition occurs for
competitive model, while 99% inhibition occurs for
noncompetitive model. However, the visual difference in
simulated uptake between models is very small (Fig. 7).
This visual similarity, even under error-free conditions,
explains the difficulty in correctly identifying the correct
model from conventional inhibition data under this
common situation.

Meanwhile, for nonconventional inhibition data, sim-
ulated uptake from competitive and noncompetive
models are more readily discernable from another.
Fig. 8 illustrates error-free uptake over a range of I/Ki
scenarios from competitive, noncompetitive, and uncom-
petitive inhibitions. The difference between competitive
and noncompetitive models is evident at even the low I/Ki
ratio of 1. The difference between noncompetitive and
uncompetitive models requires the higher I/Ki ratio of 10
(i.e. greater inhibition to discern these model differences).
These error-free simulations support observations above
from simulation and experimental findings that noncon-
ventional inhibition data appears to be the better
approach to collect data in order to elucidate type of
inhibition. Further evaluation is merited.

CONCLUSIONS

Analysis here examined the conditions and extent to which
nonlinear regression results can be relied upon. For conven-
tional inhibition data, nonlinear regression with AIC per-
formed poorly for both the competitive and noncompetitive
inhibition models. For Dixon-type data, nonlinear regression
yielded moderately better results. Interestingly, nonconven-
tional inhibition data performed well, with higher ratio of I/
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Fig. 8 Inhibition profiles from error-free nonconventional inhibition data.
Panel A shows the three profiles are essentially identical where I/Ki=0.01.
Panel B employs I/Ki=1 and shows the competitive model to be visually
different from the noncompetitive and uncompetitive models at this higher
I/Ki ratio. However, the noncompetitive and uncompetitive models were
similar to one another. Panel C employs I/Ki=10 and shows the
competitive model is easily discernable from the other two models. The
noncompetitive and uncompetitive models also differed from one another
between 0 μM and 50 μM (Figure S2 in supplemental data).
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Ki providing better results. Nonconventional inhibition data
merits further consideration.
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